Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
BMC Complement Med Ther ; 23(1): 138, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2312977

ABSTRACT

BACKGROUND: Parallel to the growth of the oral healthcare market, there is a constantly increasing demand for natural products as well. Many customers prefer products that contain fewer toxic agents, therefore providing an environmentally friendly solution with the benefit of smaller risk to the user. Medieval and early modern medicinal knowledge might be useful when looking for natural, herbal-based components to develop modern products. Along with these considerations we created, tested, and compared an entirely natural mouthwash, named Herba Dei. METHODS: The manufacturing procedure was standardized, and the created tincture was evaluated by GC/MS analysis for active compounds, experimentally tested in cell-based cytotoxicity, salivary protein integrity, cell-free antioxidant activity, anti-bacterial and anti-viral assays, and compared with three market-leading mouthwashes. RESULTS: Our tincture did not show significant damage in the cytotoxicity assays to keratinocyte and Vero E6 cells and did not disrupt the low molecular weight salivary proteins. Its radical scavenging capacity surpassed that of two tested, partly natural, and synthetic mouthwashes, while its antibacterial activity was comparable to the tested products, or higher in the bacterial aerobic respiratory assay. The active compounds responsible for the effects include naturally occurring phenylpropanoids, terpenes, and terpenoids. Our mouthwash proved to be effective in vitro in lowering the copy number of SARS-CoV-2 in circumstances mimicking the salivary environment. CONCLUSIONS: The developed product might be a useful tool to impede the transmission and spread of SARS-CoV-2 in interpersonal contact and aerosol-generating conditions. Our mouthwash can help reduce the oral bacterial flora and has an antioxidant activity that facilitates wound healing and prevents adverse effects of smoke in the oral cavity.


Subject(s)
COVID-19 , Mouthwashes , Humans , Mouthwashes/adverse effects , SARS-CoV-2 , Antioxidants , Mouth/microbiology , Terpenes
2.
OMICS ; 27(4): 180-190, 2023 04.
Article in English | MEDLINE | ID: covidwho-2278290

ABSTRACT

COVID-19 is a systemic disease whose effects are not limited to the respiratory system. The oral microbiome (OM)-brain axis is of growing interest in understanding the broader, neuropsychiatric, impacts of the COVID-19 pandemic through a systems biology lens. In this context, mental health and sleep disturbance are often reported by Asian Americans. In a cross-sectional observational study design, we examined the associations of the oral microbiome with mental health among Asian Americans during the COVID-19 pandemic (between November 2020 and April 2021). Participants (n = 20) were adult Chinese and Korean American immigrants in Atlanta, Georgia, and primarily born outside the United States (60%) with a mean age of 34.8 years ±14 (standard deviation). Participants reported depressive symptoms, anxiety, and sleep disturbance, as measured by standard questionnaires. The OM was characterized by 16S rRNA V3-V4 gene using saliva. Depressive symptoms and anxiety were reported by 60% (n = 12) of participants, whereas 35% (n = 7) reported sleep disturbance. The α-diversity was significantly associated with depressive symptoms, and marginally with anxiety. Participants with depressive symptoms and anxiety had enriched Rothia and Scardovia, respectively, whereas those without symptoms had enriched Fusobacterium. Individuals with sleep disturbance had enriched Kingella. In conclusion, this study suggests significant associations of the OM diversity with certain mental health dimensions such as depressive symptoms and anxiety. Specific taxa were associated with these symptoms. The present observations in a modest sample size suggest the possible relevance of the OM-brain axis in studies of mental health during COVID-19.


Subject(s)
COVID-19 , Emigrants and Immigrants , Microbiota , Sleep , Adult , Humans , Asian , COVID-19/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Depression/diagnosis , Depression/psychology , Mental Health , Pandemics , RNA, Ribosomal, 16S/genetics , Surveys and Questionnaires , United States , Mouth/microbiology , Young Adult , Middle Aged
3.
J Clin Lab Anal ; 36(7): e24483, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1929823

ABSTRACT

OBJECTIVE: This case-control study was designed to compare the composition of the predominant oral bacterial microbiome in Alzheimer's disease (AD) and control group. SUBJECT: A total of 30 adult participants (15 AD and 15 healthy individuals) were entered in this study. The composition of oral bacterial microbiome was examined by quantitative real-time polymerase chain reaction (qPCR) using bacterial 16S rDNA gene. The levels of systemic inflammatory cytokines in both groups were assessed using enzyme-linked immunosorbent assays (ELISA). RESULTS: The loads of Porphyromonas gingivalis, Fusobacterium nucleatum, and Prevotella intermedia were significantly more abundant in the AD compared to the control group (p < 0.05). Although Aggregatibacter actinomycetemcomitans and Streptococcus mutans were relatively frequent in the AD group, no significance difference was observed in their copy number between two groups. Although the concentrations of IL-1, IL-6, and TNF-α were higher in the AD group, there was a significant difference in their levels between the two groups (p < 0.05). Finally, there was a significant relationship between increased number of pathogenic bacteria in oral microbiome and higher concentration of cytokines in patient's blood. CONCLUSION: Our knowledge of oral microbiome and its exact association with AD is rather limited; our study showed a significant association between changes in oral microbiome bacteria, increased inflammatory cytokines, and AD.


Subject(s)
Alzheimer Disease , Microbiota , Mouth , Adult , Aggregatibacter actinomycetemcomitans , Alzheimer Disease/microbiology , Case-Control Studies , Cytokines , Humans , Mouth/microbiology , Pilot Projects
4.
Oral Dis ; 28 Suppl 2: 2603-2604, 2022 11.
Article in English | MEDLINE | ID: covidwho-1528405
5.
Pulm Med ; 2021: 4712406, 2021.
Article in English | MEDLINE | ID: covidwho-1506246

ABSTRACT

Periodontal diseases are a range of polymicrobial infectious disorders, such as gingivitis and periodontitis, which affect tooth-supporting tissues and are linked to playing a role in the exacerbation of several pulmonary diseases. Pulmonary diseases, such as pneumonia, chronic obstructive pulmonary disease (COPD), asthma, tuberculosis, COVID-19, and bronchiectasis, significantly contribute to poor quality of life and mortality. The association between periodontal disease and pulmonary outcomes is an important topic and requires further attention. Numerous resident microorganisms coexist in the oral cavity and lungs. However, changes in the normal microflora due to oral disease, old age, lifestyle habits, or dental intervention may contribute to altered aspiration of oral periodontopathic bacteria into the lungs and changing inflammatory responses. Equally, periodontal diseases are associated with the longitudinal decline in spirometry lung volume. Several studies suggest a possible beneficial effect of periodontal therapy in improving lung function with a decreased frequency of exacerbations and reduced risk of adverse respiratory events and morbidity. Here, we review the current literature outlining the link between the oral cavity and pulmonary outcomes and focus on the microflora of the oral cavity, environmental and genetic factors, and preexisting conditions that can impact oral and pulmonary outcomes.


Subject(s)
Microbiota , Mouth/microbiology , Periodontal Diseases/complications , Pulmonary Disease, Chronic Obstructive/complications , Causality , Environment , Humans
6.
Nutrients ; 13(9)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1448913

ABSTRACT

The human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.


Subject(s)
Dysbiosis/metabolism , Microbiota , Female , Gastrointestinal Microbiome , Health Status , Humans , Male , Mouth/microbiology , Respiratory System/microbiology , Skin/microbiology , Urogenital System/microbiology , Vagina/microbiology
7.
NPJ Biofilms Microbiomes ; 7(1): 61, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1322476

ABSTRACT

The human oral and gut commensal microbes play vital roles in the development and maintenance of immune homeostasis, while its association with susceptibility and severity of SARS-CoV-2 infection is barely understood. In this study, we investigated the dynamics of the oral and intestinal flora before and after the clearance of SARS-CoV-2 in 53 COVID-19 patients, and then examined their microbiome alterations in comparison to 76 healthy individuals. A total of 140 throat swab samples and 81 fecal samples from these COVID-19 patients during hospitalization, and 44 throat swab samples and 32 fecal samples from sex and age-matched healthy individuals were collected and then subjected to 16S rRNA sequencing and viral load inspection. We found that SARS-CoV-2 infection was associated with alterations of the microbiome community in patients as indicated by both alpha and beta diversity indexes. Several bacterial taxa were identified related to SARS-CoV-2 infection, wherein elevated Granulicatella and Rothia mucilaginosa were found in both oral and gut microbiome. The SARS-CoV-2 viral load in those samples was also calculated to identify potential dynamics between COVID-19 and the microbiome. These findings provide a meaningful baseline for microbes in the digestive tract of COVID-19 patients and will shed light on new dimensions for disease pathophysiology, potential microbial biomarkers, and treatment strategies for COVID-19.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome/physiology , SARS-CoV-2/isolation & purification , Viral Load , Bacteria/classification , Bacteria/genetics , COVID-19/diagnosis , COVID-19/virology , Feces/microbiology , Female , Hospitalization , Humans , Male , Mouth/microbiology , RNA, Ribosomal, 16S , SARS-CoV-2/genetics
8.
Eur Rev Med Pharmacol Sci ; 25(13): 4579-4596, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1319962

ABSTRACT

OBJECTIVE: The human being has evolved in close symbiosis with its own ecological community of commensal, symbiotic and pathogenic bacteria. After the intestinal microbiome, that of the oral cavity is the largest and most diversified. Its importance is reflected not only in local and systemic diseases, but also in pregnancy since it would seem to influence the placental microbiome. MATERIALS AND METHODS: This is a literature review of articles published in PubMed about Fusobacterium Nucleatum and both its implications with systemic and oral health, adverse pregnancy outcomes, flavors perception and its interference in the oral-nasal mucosal immunity. RESULTS: It is in maintaining the microbiome's homeostasis that the Fusobacterium nucleatum, an opportunistic periodontal pathogen of the oral cavity, plays a crucial role both as a bridge microorganism of the tongue biofilm, and in maintaining the balance between the different species in the oral-nasal mucosal immunity also by taste receptors interaction. It is also involved in the flavor perception and its detection in the oral microbiome of children from the first days of life suggests a possible physiological role. However, the dysbiosis can determine its pathogenicity with local and systemic consequences, including the pathogenesis of respiratory infections. CONCLUSIONS: It is interesting to evaluate its possible correlation with Sars-CoV-2 and the consequences on the microflora of the oral cavity, both to promote a possible broad-spectrum preventive action, in favor of all subjects for whom, by promoting the eubiosis of the oral microbiome, a defensive action could be envisaged by the commensals themselves but, above all, for patients with specific comorbidities and therefore already prone to oral dysbiosis.


Subject(s)
COVID-19/microbiology , Fusobacterium nucleatum/isolation & purification , Mouth/microbiology , COVID-19/immunology , Female , Fusobacterium nucleatum/immunology , Fusobacterium nucleatum/pathogenicity , Humans , Mouth/immunology , Pregnancy
9.
Gut ; 70(7): 1253-1265, 2021 07.
Article in English | MEDLINE | ID: covidwho-1166535

ABSTRACT

OBJECTIVE: To characterise the oral microbiome, gut microbiome and serum lipid profiles in patients with active COVID-19 and recovered patients; evaluate the potential of the microbiome as a non-invasive biomarker for COVID-19; and explore correlations between the microbiome and lipid profile. DESIGN: We collected and sequenced 392 tongue-coating samples, 172 faecal samples and 155 serum samples from Central China and East China. We characterised microbiome and lipid molecules, constructed microbial classifiers in discovery cohort and verified their diagnostic potential in 74 confirmed patients (CPs) from East China and 37 suspected patients (SPs) with IgG positivity. RESULTS: Oral and faecal microbial diversity was significantly decreased in CPs versus healthy controls (HCs). Compared with HCs, butyric acid-producing bacteria were decreased and lipopolysaccharide-producing bacteria were increased in CPs in oral cavity. The classifiers based on 8 optimal oral microbial markers (7 faecal microbial markers) achieved good diagnostic efficiency in different cohorts. Importantly, diagnostic efficacy reached 87.24% in the cross-regional cohort. Moreover, the classifiers successfully diagnosed SPs with IgG antibody positivity as CPs, and diagnostic efficacy reached 92.11% (98.01% of faecal microbiome). Compared with CPs, 47 lipid molecules, including sphingomyelin (SM)(d40:4), SM(d38:5) and monoglyceride(33:5), were depleted, and 122 lipid molecules, including phosphatidylcholine(36:4p), phosphatidylethanolamine (PE)(16:0p/20:5) and diglyceride(20:1/18:2), were enriched in confirmed patients recovery. CONCLUSION: This study is the first to characterise the oral microbiome in COVID-19, and oral microbiomes and lipid alterations in recovered patients, to explore their correlations and to report the successful establishment and validation of a diagnostic model for COVID-19.


Subject(s)
COVID-19/blood , COVID-19/microbiology , Feces/microbiology , Lipids/blood , Mouth/microbiology , Adult , COVID-19/diagnosis , Case-Control Studies , China , Cohort Studies , Female , Gastrointestinal Microbiome , Humans , Lipidomics , Male , Middle Aged
10.
Front Cell Infect Microbiol ; 11: 625581, 2021.
Article in English | MEDLINE | ID: covidwho-1116652

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the pandemic Coronavirus Disease 2019 (COVID-19). This virus is highly transmissible among individuals through both droplets and aerosol leading to determine severe pneumonia. Among the various factors that can influence both the onset of disease and the severity of its complications, the microbiome composition has also been investigated. Recent evidence showed the possible relationship between gut, lung, nasopharyngeal, or oral microbiome and COVID-19, but very little is known about it. Therefore, we aimed to verify the relationships between nasopharyngeal microbiome and the development of either COVID-19 or the severity of symptoms. To this purpose, we analyzed, by next generation sequencing, the hypervariable V1-V2-V3 regions of the bacterial 16S rRNA in nasopharyngeal swabs from SARS-CoV-2 infected patients (n=18) and control (CO) individuals (n=12) using Microbiota solution A (Arrow Diagnostics). We found a significant lower abundance of Proteobacteria and Fusobacteria in COVID-19 patients in respect to CO (p=0.003 and p<0.0001, respectively) from the phylum up to the genus (p<0.001). The Fusobacterium periodonticum (FP) resulted as the most significantly reduced species in COVID-19 patients respect to CO. FP is reported as being able to perform the surface sialylation. Noteworthy, some sialic acids residues on the cell surface could work as additional S protein of SARS-CoV-2 receptors. Consequently, SARS-CoV-2 could use sialic acids as receptors to bind to the epithelium of the respiratory tract, promoting its clustering and the disease development. We can therefore speculate that the significant reduction of FP in COVID-19 patients could be directly or indirectly linked to the modulation of sialic acid metabolism. Finally, viral or environmental factors capable of interfering with sialic metabolism could determine a fall in the individual protection from SARS-CoV-2. Further studies are necessary to clarify the precise role of FP in COVID-19.


Subject(s)
COVID-19/epidemiology , Fusobacterium Infections/microbiology , Fusobacterium/growth & development , Microbiota , N-Acetylneuraminic Acid/metabolism , Pandemics , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/virology , Female , Fusobacterium/genetics , Humans , Male , Middle Aged , Mouth/microbiology , Nasopharynx/microbiology
12.
J Acoust Soc Am ; 148(4): 2322, 2020 10.
Article in English | MEDLINE | ID: covidwho-901221

ABSTRACT

Respiratory droplets emitted during speech can transmit oral bacteria and infectious viruses to others, including COVID-19. Loud speech can generate significantly higher numbers of potentially infectious respiratory droplets. This study assessed the effect of speech volume on respiratory emission of oral bacteria as an indicator of potential pathogen transmission risk. Loud speech (average 83 dBA, peak 94 dBA) caused significantly higher emission of oral bacteria (p = 0.004 compared to no speech) within 1 ft from the speaker. N99 respirators and simple cloth masks both significantly reduced emission of oral bacteria. This study demonstrates that loud speech without face coverings increases emission of respiratory droplets that carry oral bacteria and may also carry other pathogens such as COVID-19.


Subject(s)
Air Microbiology , Bacteria/pathogenicity , Bacterial Infections/transmission , Inhalation Exposure , Mouth/microbiology , Respiration , Speech Acoustics , Aerosols , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Humans , Inhalation Exposure/prevention & control , Masks , Personal Protective Equipment , Respiratory Protective Devices
SELECTION OF CITATIONS
SEARCH DETAIL